ON EXPLICIT INTERVAL METHODS OF ADAMS-BASHFORTH TYPE
نویسندگان
چکیده
منابع مشابه
A Generalization of the Adams-bashforth Method
In this paper, we investigate a generalization of the Adams-Bashforth method by using the Taylor’s series. In case of m-step method, the local truncation error can be expressed in terms of m − 1 coefficients. With an appropriate choice of coefficients, the proposed method has produced much smaller error than the original Adams-Bashforth method. As an application of the generalized Adams-Bashfor...
متن کاملUnconditional Stability of a Crank-nicolson Adams-bashforth 2 Implicit-explicit Numerical Method∗
Systems of nonlinear partial differential equations modeling turbulent fluid flow and similar processes present special challanges in numerical analysis. Regions of stability of implicit-explicit methods are reviewed, and an energy norm based on Dahlquist’s concept of G-stability is developed. Using this norm, a time-stepping Crank-Nicolson Adams-Bashforth 2 implicit-explicit method for solving...
متن کاملExponential multistep methods of Adams-type
The paper is concerned with the construction, implementation and numerical analysis of exponential multistep methods. These methods are related to explicit Adams methods but, in contrast to the latter, make direct use of the exponential and related matrix functions of a (possibly rough) linearization of the vector field. This feature enables them to integrate stiff problems explicitly in time. ...
متن کاملNumerical Solution of fuzzy differential equations of nth-order by Adams-Bashforth method
So far, many methods have been presented to solve the rst-order di erential equations. But, not many studies have been conducted for numerical solution of high-order fuzzy di erential equations. In this research, First, the equation by reducing time, we transform the rst-order equation. Then we have applied Adams-Bashforth multi-step methods for the initial approximation of one order di erentia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Methods in Science and Technology
سال: 2002
ISSN: 1505-0602
DOI: 10.12921/cmst.2002.08.02.46-57